

Course Syllabus (Academic Year 2021)

School of Interdisciplinary Studies, Kanchanaburi Campus, Mahidol University

1) Course No. and Title: KAED 222 Engineering Mechanics

Credit (study hours): 3(3-0-6)

2) **Program Name:** Bachelor of Engineering in Environmental Engineering and Disaster Management

3) Course Module: Major Required Courses

Pre/co-requisite: SCMA 165 (Ordinary Differential Equations)

5) Class Schedule & Venue: 9.00-12.00 on Monday, Offline, Google classroom, Webex and Moodle

6) Class Coordinator: Dr. Luksanaree Maneechot

Mobile: 084-1598294 Email: luksanaree.man@mahidol.edu

7) Course Description

Force system; resultant; equilibrium; kinematics and kinetics of particles and rigid Bodies; Newton's second law of motion.

8) Course Objectives / Course Learning Outcomes (CLOs)

No	Objectives / CLOs	Expected Skills / Knowledge		PLOs	
		Specific	Generic	Knowledge	
		(S)	(G)	(K)	
1	To understand force system and identify	S1	G1	K1	1
	type of force				
2	To calculate resultant force, equilibrium	S1	G1	K1, K2	1
	force, friction force, and distributed				
	forces				
3	To identify type of motion and force	S1	G1	K1, K2	1
4	To calculate forces related to velocity	S1	G1	K1, K2, K3	1
	and acceleration				

Specific Competences

S1 Ability to apply knowledge of mathematics, physics, and engineering

Generic Competence

G1 Systematic thinking, problem solving, and analytical skills

Knowledge Competence

- K1 Calculus and vector mechanics
- K2 Force systems, motions and equilibrium
- K3 Kinematics and kinetics of particles and rigid bodies

9) Class Instructor List

10) Course Outline

Week	Date	Contents	CLOs	Teaching & Learning method	Instructors	
1	10/1/2022	Introduction: Conversion	1	Course Syllabus and Lecture	LM	
2	17/1/2022	Force systems: Two Dimensions	1, 2	Lecture and Activity/Assignment	LM	
3	24/1/2022	Force systems: Three Dimensions	1, 2	Lecture and Activity/Assignment	LM	
4	31/1/2022	Forces and Moments	1, 2, 3	Lecture and Activity/Assignment	LM	
5	7/2/2022	Forces and Moments	1, 2, 3	Lecture and Activity/Assignment	LM	
6	14/2/2022	Equilibrium of Rigid Bodies	1, 2	Lecture and Activity/Assignment	LM	
7	21/2/2022	Equilibrium in Three Dimensions	1, 2	Lecture and Activity/Assignment	LM	
8	Mid-term exam (28/2/2022-4/3/2022)					
9	7/3/2022	Friction Force	1, 2	Lecture and Activity/Assignment	LM	
10	14/3/2022	Kinetics of Particles (Axes x-y)	1, 2	Lecture and Activity/Assignment	LM	
11	21/3/2022	Kinetics of Particles: (Axes n-t)	1, 2	Lecture and Activity/Assignment	LM	
12	28/3/2022	Kinetics of Particles	1, 2	Lecture and Activity/Assignment	LM	
13	4/4/2022	Kinematics of Rigid Bodies	1, 2	Lecture and Activity/Assignment	LM	
14	11/4/2022	Plane Motion of Rigid Bodies: Relative Velocity	1, 2, 4	Lecture and Activity/Assignment	LM	
15	18/4/2022	Plane Motion of Rigid Bodies: Relative Acceleration	1, 2, 4	Lecture and Activity/Assignment	LM	
16	2/5/2022	Plane Motion of Rigid Bodies: Motion Relative to Rotating Axes	1, 2, 4	Lecture and Activity/Assignment	LM	
17		Final exam (2	2/5/2022-	15/5/2022)		

11) Course Assessment

No.	Methods /	Regulations	CLOs	Week	Weight
	Activities				Distribution (%)
1	Class participation	Submitting assignments in time and 80% of ontime-attendences		All	20
2	Mid-term exam		1, 2, 3	1-7	40
3	Final Exam		1, 2, 4	9-16	40

12) Grading System

Grade	Score
A	≥80
В	75-79.99
B+	70-74.99
C+	65-65.99
С	60-64.99
D+	55-59.99
D	50-54.99
F	< 50

13) References

- Beer, F.P., Johnston, E.R., Mazurek, D.F., (2019). Vector Mechanics for Engineers: Statics (12th ed.): McGraw-Hill.
- Hibbeler, R.C., (2015). Mechanics for Engineers: Statics (14th ed.): Pearson Education South Asia Ple Ltd.
- Hibbeler, R.C., (2015). Mechanics for Engineers: Dynamics (14th ed.): Pearson Education South Asia Ple Ltd.