

Course Syllabus (Academic Year 2020)

School of Interdisciplinary Studies, Kanchanaburi Campus, Mahidol University

1. Course No. and Title : KAED 353 Air Pollution Management and Control

Credit (study hours) : 3(3-0-6)

2. Program Name : Bachelor of Engineering Program in Environmental Engineering and

Disaster Management

3. Course Module : Major Required Courses

Pre/co-requisite : None

4. Class Semester : 2nd Semester Academic Year 2021

5. Class Schedule & Venue: Thursday 9:00-12:00, Room XXXX

6. Class Coordinator

Monchai Pumkaew Contact No.: 097 248 8554

Email: monchai.pum@mahidol.ac.th

Arika Bridhikitti, Ph.D. Contact No.: 084-660-2919

Email: arika.bri@mahidol.edu

Arnon Sitdhivej (Guest lecturer) Contact No.: 081 816 5594

Email: Sitdhivej@gmail.com

7. Course Description

ชนิดและแหล่งกำเนิดของมลพิษทางอากาศ ผลกระทบต่อสุขภาพและสิ่งแวคล้อม หลักการควบคุมฝุ่น และก๊าซมลพิษ การชักตัวอย่างและวิธีการวิเคราะห์ กฎหมายและข้อกำหนด หลักการและการออกแบบหน่วย ควบคุมฝุ่นละอองและก๊าซ การออกแบบระบบระบายอากาศ

Types of air pollutants and sources; effects on health and environment; principles of particulate and gaseous pollutant control; sampling and analysis methods; laws and regulations. Principles and design of air pollution control units for particulate and gases; ventilation system design.

8. Course Objectives / Course Learning Outcomes (CLOs)

NI.	Objections / OLOs	Expected	Sub-		
No.	Objectives / CLOs	Specific	Generic	Knowledge	PLOs
8.1	Describe potential sources and physio-			/	1.1, 1.2
	chemical characteristics of air				
8.2	Predict dispersion of air pollution under			/	1.1, 1.2,

	different climate stability conditions			2.2
8.3	Sample air pollutants according to the		/	1.1
	standard guideline			
8.4	Design air pollution control system for the		/	2.2, 4.2,
	selected industries (Project based)			5.4, 6.3,
				7.3
8.5	Design air ventilation system for selected case	/	/	2.2, 4.2,
	studies (Project based)			5.4, 6.3

Program learning outcomes

- 1.1. Accurately explain basic concept, theories and principles of environmental engineering
- 1.2. Systematically summarize important issues from collected data
- 5.1 Integrate economics, social and environmental issues to environmental engineering and disaster management works
- 6.3 Develop a conceptual model or prototype from fundamental engineering knowledge
- **5.5.** Learn and experience from real working environments and solve engineering problems occurred in organizations or industries

9. Course Outline

Week	Date	Contents	CLOs	Learning method	Instructor
1	6 Jan 2022	-Introduction to course outline, objectives,	5	Lecture	AB
		and assessment		In-class calculation	
		-Air Pressure, Air density, Air composition,			
		Air			
		- Air Ventilation for Occupation health and			
		Heat mitigation			
2	13 Jan 2022	Fan	5	Presentation	AB
		-Fan characteristic curve		In-class calculation	
		-System curve			
		Criteria Air Pollutants	1	Presentation	AB
		- Effects	4		
		-National Ambient Air Quality Standards			
3	20 Jan 2022	Criteria Air Pollutants (cont)	1	Presentation	AB
			4	Submit Homework 1	
		Group Discussion		Presentation	AB

Week	Date	Contents	CLOs	Learning method	Instructor
4	27 Jan 2022	Air Pollution Management and Control - Traffic, Urban, Industries	3	Presentation	AB
5	3 Feb 2022	Measurement and monitoring of air	3	Presentation	AB
		pollutants, Sampling			
6	10 Feb 2022	Meteorology for air pollution control	2	Presentation	AB
	16 Feb 2022	9.00 AM to 4.30 PM LEAN Canvas workshop			BA faculty members
7	17 Feb 2022	Group project		Group project discussion and planning	AB
8	24 Feb 2022	Introduction to Air pollution control technology -Gravity Settling Chamber -Cyclone	4	Presentation In-class calculation	AB
	28 Feb to 4 Ma	ar 2022 Midterm Examination			l
9	10 Mar 2022	Wet scrubber Bag house, Bag Filter Electronic Precipitator	4	Presentation In-class calculation	AB
10	17 Mar 2022	Group project		Group project discussion and planning	AB
11	24 Mar 2022	Adsorption Absorption Biofiltration	4	Presentation In-class calculation	AB
12	31 Mar 2022	Thermal Oxidation	4	Presentation In-class calculation	AB
13	2 Apr 2022 9.00 AM to 16.00 PM (6 hour) Sat	VOCs inventory in petroleum industry: field experience Air pollution model: field experience	1, 2	Presentation & workshop	MP, AS
14	7 Apr 2022	Group project discussion	4,5	Group Presentation	AB
15	TBA	Group Project Presentation: ED Innovation		Group Presentation	AB

L

10. Course Assessment

No.	Methods/Activities	Regulations	CLOs	Week	Weight
					Distribution
1	Class	• Student must submit the assignments		All	5
	participation	in time			
	and Class	 Student must attend classes on time > 			
	attention	80% of the course, by CC			
		Student must participate in class activity		All	5
2	Assignment	Learner must practice the engineering	All	Weekly	25
		skills from exercises and assignments			
		II. The score will be evaluated according			
		to the quality and details of work by			
		instructors. (Correctness,			
		Determination)			
3	Group Project*	I. Topic assigned by lecturer	All	15	25
		II. Exhibit in ED Innovation Day			
		III. Grade evaluated by Rubric criteria*			
3	Midterm	III. The exam will be held on schedule.	All	9	20
	Examination	IV. It is close-book exam which student			
		can use personal calculator.			
		V. The scope of exam will be cover			
		topics of the 1 st -8 th week in this			
		course.			
6	Final Examination	VI. The exam will be held on schedule.	All	16	20
		VII. It is close-book exam which student			
		can use personal calculator.			
		VIII.III. The scope of exam will cover all			
		topics of this course.			
				Total	100

*Group Project topic

- I. Mueng Kanchanaburi Smart City
- II. Evaluate efficiencies of 10 reusable facial masks in the market for PM2.5 reduction and provide recommendations to users
- III. Estimate changes in the efficiency of a standard facial mask with time How it fit with fabric filter calculation?
- IV. Estimate dust capturing capacity of 10 popular city plants and discuss factors influencing the capturing capacity
- V. Estimate efficiency of water springer for ambient PM2.5 removal How it fit with wet scrubber calculation?
- VI. Compare best efficiencies of settling chamber and cyclone for bagasse ash removal (sugarcane industry)
- VII. Assess potential sources of haze in Bangkok and Chiangmai using backward trajectory analysis
- VIII. Evaluate bed contact time for removing household waste composting odor using bagasse-based biofiltration
- IX. Establish user-interface model for estimating plume rise and maximum downwind ground-level concentration using Gaussian Dispersion Model

Rubric for Group project

Accurately explain basic	Integrate economics,	Solve engineering	Express ideas and use
concept, theories and	social and environmental	problems occurred in	appropriate media for
principles of	issues to environmental	organizations or	communication
environmental	engineering and disaster	industries	
engineering	management works		
10	5	10	5

11. Grading System

Criterion-referenced evaluation

The student performance in overall course will be measured by Criterion-referenced assessment as following table.

Grade	Score	Grade	Score	Grade	Score	Grade	Score
A	80%	В	70 – 74.99%	С	60 - 64.99%	D	50 – 54.99%
B+	75 – 79.99%	C+	65 – 69.99%	D+	55 – 59.99%	F	< 50 %

12. References

- กรมโรงงานอุตสาหกรรม. ตำราระบบบำบัดมลพิษทางอากาศ. ศูนย์บริการวิชาการแห่ง
 จุฬาลงกรณ์มหาวิทยาลัย. พิมพ์ครั้งที่ 1. กรุงเทพมหานคร. 2547.
- 2. ศิวพันธุ์ ชูอินทร์. การเก็บตัวอย่างและตรวจวัดสารมลพิษทางอากาศ.สำนักพิมพ์แห่งจุฬาลงกรณ์ มหาวิทยาลัย.พิมพ์ครั้งที่ 1. กรุงเทพมหานคร. 2560
- 3. รศ.ดร.วันทนี พันธุ์ประสิทธิ์. การระบายอากาศในโรงงานอุตสาหกรรม สำหรับนักสุขศาสตร์ อุตสาหกรรมและนักอาชีวอนามัย. พิมพ์ครั้งที่ 2.
- 4. สภาวิศวกร. ระบบควบคุมมลพิษทางอากาศ. โดยคณะอนุกรรมการมาตรฐานการประกอบวิชาชีพ. Download http://www.coe.or.th/coe-2/Download/Articles/ENV/CH6.pdf (06/02/2560)
- 5. Thedore, L. (2008). Air Pollution Control Equipment Calculations. Wiley.
- 6. Myer, K. editor (2018). Handbook of environmental engineering. First Edition, Wiley: USA
- 7. Schnelle Jr, K. B., Dunn, R. F., & Ternes, M. E. (2015). *Air pollution control technology handbook*. CRC press..

13. PLOs (update 26/10/2018)

Progra	m Learning Outcomes
1	Apply environmental engineering principles and knowledge to systematic solutions according to
	Professional Standards
2	Apply practical skills in environmental engineering and disaster management to real situations based
	on academic principles and professional ethics
3	Apply geo-informatics system and information technologies in planning to handle environmental
	and disaster problems in accordance with academic principles
4	Present, discuss, and transfer knowledge clearly to persons related to professional works according
	to communication objectives
5	Work as an environmental engineer with other people to solve complicated problems according to
	economic, social, and environmental issues
6	Design and invent a creative innovation in environmental engineering and disaster management