

Course Syllabus (Academic Year 2021)

School of Interdisciplinary Studies, Kanchanaburi Campus, Mahidol University

1.	Course No. and Title:	KACB 209 Genetics		
	Credit (study hours):	(3-0-6)		
2.	Program Name:	Bachelor of Science in Conservation Biology		
3.	Course Module:	\square Gen.Edu. course \square B.Sc. core course \blacksquare CB core course \square Elective		
	course			
	Pre/co-requisite:	SCBI 124, SCBI 102		
4.	Semester:	☑ 1 st semester □ 2 nd semester □ 3 rd semester Academic Year 2021		
5.	Class Schedule & Venue:	Friday 13:00-16:00		
6.	Course Coordinator:	Lect. Sanae Jitklang		
		Tel. 085-1427395, Email: sanae.jit@mahidol.ac.th		

7. Course Description

Introduction to Genetics; Reproduction and cell cycle; Mendelian genetics; Extensions of Mendelian genetics; Quantitative genetics; Extranuclear inheritance; Chromosome mapping; Sex determination; Cytogenetics and chromosomal variation; Human genetics and pedigree analysis; Basic of Molecular genetics, DNA Replication and the central dogma; Application of genetic engineering; Population genetics; Species concepts and speciation; Conservation genetics

8. Course Objectives / Course Learning Outcomes (CLOs)

No.	Objectives/CLOs	PLOs*
8.1	Define genetic terms, introduction to reproduction and cell cycle	1
8.2	Compare the concept between mendelian and non-mendelian genetics	1
8.3	Explain the chromosome mapping, cytogenetics, sex determination and chromosomal variation including human genetics	
8.4	Explain the concepts of molecular genetics, population genetics, species concept and the concepts of conservation genetics for applying in biodiversity conservation	2,4

NOTE: *PLOs = Program Learning Outcomes

PLO 1: Apply skills and knowledge of fundamental and biological sciences for explaining biodiversity.

- PLO 2: Evaluate functions, value, status, trend, and threats to address biodiversity problems.
- PLO 4: Choose appropriate techniques, research, and possible practices for biodiversity conservation.

9. Class Instructor

Name : Sanae JitklangContact No. : 085-1427395E	Email : sanae.jit@mahidol.ac.th
---	---------------------------------

10. Course Outline

Week	Date	Contents	CLOs	Instructor's Names
1	23/07/21	Course overview and Introduction to genetics - Three great milestones in Genetics (Mendel, Watson and Crick, Genome Project) - Introduction to heredity		Sanae Jitklang
2	30/07/21	Reproduction and cell cycle - Difference between asexual and sexual reproduction - Similarity and difference between mitosis and meiosis - The role of meiosis in sexual life cycles		Sanae Jitklang
3	6/08/21 - Mendelian genetics - Mendelian genetics: experiment of genetic cross - Law of segregation gene and independent assortment - Application of Mendelism: Punnet square and branching system		1,2	Sanae Jitklang
4	13/08/21	Extensions of Mendelian genetics - Incomplete dominance, co-dominance - Pleiotropy, Epistasis, Complementary gene, Modifier gene, Lethal gene, Sub-lethal gene		Sanae Jitklang
5	20/08/21	Quantitative genetics (Polygenic inheritance) - Difference between Qualitative genetics and Quantitative genetics (Polygenic inheritance) including heritability	1,2	Sanae Jitklang
6	27/08/21	Extranuclear inheritance - Cytoplasmic inheritance; Chloroplast DNA and Mitochondrial DNA - Mitochondrial inheritance and Endosymbiosis theory - Maternal effect	1,2	Sanae Jitklang
7	03/09/21	Chromosome mapping - Linked gene and linkage group - Sturtevant and Morgan's discoveries: sex-linked gene - Calculating the distance between gene; crossing over and recombination frequency	1,3	Sanae Jitklang

	1		1	T1
8	10/09/21	 Sex chromosome and Sex determination Classification of Sex determination system in group of organism Sex determination in Human, Karyotype, Human Y Chromosome and Barr bodies Environmental sex determination: Temperature dependent 	1,3	Sanae Jitklang
		sex determination in Reptiles		
9		Mid-term Examination 18/09/21-8/10/21		
10	Cytogenetics, Variation in chromosomes - Definition of cytogenetics 17/09/21 - Polytene chromosome and structure - Variation in chromosome number and structure		1,3	Sanae Jitklang
11	24/09/21	Human genetics and Pedigree analysis - Important role in genetic counseling and pedigree symbol for 24/09/21 inherited diseases - Autosomal recessive or dominant inheritance - X-linked recessive or dominant inheritance - Y-linked inheritance		Sanae Jitklang
12	01/10/21 Molecular genetics - Structure of DNA and RNA - The Central Dogma: transcription and translation		1,4	Sanae Jitklang
13	15/10/21Genetic engineering - Application of molecular genetics; Genetic engineering		1,4	Sanae Jitklang
14	22/10/21	Population genetics - Calculating gene and genotype frequency - Hardy-Weinberg Law and factors that change the gene frequency	1,4	Sanae Jitklang
15	29/10/21 Species concept and Speciation - Species problems, species concepts and biological species concepts including reproductive isolating mechanism		1,4	Sanae Jitklang
16	05/11/21	Conservation genetics - Definition of conservation genetics	1,4	Sanae Jitklang

	Habitat and population fragmentationLoss of genetic diversity in small population		
17	Final Examination 12-19-26/11/21		

11. Course Assessment

No.	Methods / Activities	Regulations	CLOs	Week	Weight Distribution (%)
11.1	Mid-term exam	3 hours exam (other regulations will be announced in the class later)	1, 2, 3, 4	1-8	35
11.2	Final exam	3 hours exam (other regulations will be announced in the class later)	1, 4, 5	10-16	35
11.3	Assignments/quiz	To be announced	1-5	1-8, 10-16	15
11.4	Reports and discussion	To be announced	5	16	5
11.5	Class attendance and participation	On time class	1-5	1-8, 10-16	10
				Total	100

12. Grading System

Criterion-referenced evaluation

Grade	Score	Grade	Score	Grade	Score	Grade	Score
А	≥ 80 %	В	70 – 74.99%	С	60 - 64.99%	D	50 – 54.99%
B+	75 – 79.99%	C+	65 - 69.99%	D+	55 - 59.99%	F	< 50 %

Norm-referenced evaluation

*If use both criterion and norm-referenced evaluation, please tick two boxes.

13. References

Snustad D.P. and Simmons M.J. (2012). *Principles of Genetics*. 6th edition, John Wiley and Sons. 786 pp. Tamarin R. H. (2001). *Principles of Genetics*. 7th edition, The McGraw-Hill Companies. 686 pp.