

Course Syllabus (Academic Year 2022)

School of Interdisciplinary Studies, Kanchanaburi Campus, Mahidol University

1.	Course No. and Title	: KAED 225 Chemistry for Environmental Engineering			
	Credit (study hours)	: 3 (3-0-6)			
2.	Program Name	: Bachelor of Engineering Program in Environmental Engineering and			
		Disaster Management			
3.	Course Module	: Major Required Courses			
	Pre/co-requisite	: SCCH 113 (General Chemistry)			
4.	Class Semester	: 🗹 1 st Semester 🗌 2 nd Semester Academic Year 2022			
5.	Class Schedule & Venue	: Tuesday 09:00 – 12:00			
		Class Coordinator : Dr. Pensiri Prachakittikul			
		Contact No: 086-0240919			
		: Email: pensiri.prc@mahidol.edu			

6. Course Description

Fundamental principles of environmental engineering calculations, mass, and energy balance, chemical kinetics, chemical thermodynamics, basic reactor models, chemical equilibrium, acid-base chemistry, precipitation, dissolution, complex ion equilibria oxidation-reduction reactions, carbonate system, aquatic chemistry, colloid chemistry, chemical and physical characteristics of water and wastewater, water quality parameters, sample collections and preservations, water and wastewater analyses in laboratory e.g. pH, hardness, alkalinity, acidity, solids, dissolved oxygen, biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrogen, phosphorus, etc., application of water quality data in environmental engineering practices, basic of chemical treatment processes e.g. coagulation-flocculation and disinfection, etc.

7. Course Learning Outcomes (CLOs)

No.	CLOs	Expected	PLOs		
		Specific (SS)	Generic (GS)	Knowledge (K)	
1	Explain terminologies related to water quality and the importance of water quality parameters	 Professionalism SS2 	-	Water and Wastewater K2	1 (Introductory)
2.	Perform basic unit calculations and conversions used in environmental engineering	 Mathematic solving SS1 		-	1, 2 (Introductory)
3	Illustrate the chemical concept and their application in environmental engineering fields	 Ability to analyze Problem solving Systematic thinking SS2, SS3 	GS1-GS4	Water and Wastewater K1-K5	1 (Introductory)
4.	Apply the equilibrium equations, kinetic equations, and stoichiometric relationships to solve environmental problems	 Mathematic solving Ability to analyze Problem solving Data interpretation SS1-SS5 	GS1-GS4	Water and Wastewater K1, K2, K5	1, 2 (Introductory)
5.	Apply knowledge of basic water chemistry to solve problems associated with waste and wastewater treatment	 Ability to analyze Problem solving SS1-SS5 	GS1-GS4	Water and Wastewater K1-K6	1, 2 (Introductory)

8. Class Instructor List

Dr. Pensiri Prachakittikul (PP) Contact No. : 086-024-0919 Email: pensiri.prc@mahidol.edu

9. Course Outline

Week	Date	Date Contents	CLOs	Teaching & Learning	Instructor's		
Week			CLOS	method	Names		
	Review fundamentals of chemistry for environmental engineering I						
1	9/08/2022	Unit of measurement	1, 2	• Lecture with learning	PP		
		- Significant figure and rounding		materials			
		the results		 In class assignment 			
		- Matter and properties of matter		• Out of class			
		- States of matter		assignment			
		- Concentrations of solutions		 Asking and 			
		- Units of concentration		answering questions			
2	16/08/2022	Stoichiometry	1, 2,		PP		
		- Balance the equation	4				
		Chemical equilibria I					

Week	Date	Contents	CLOs	Teaching & Learning method	Instructor's Names
		- Homogeneous equilibria			
		- Heterogeneous equilibria (solubility			
		product)			
3	23/08/2022	Chemical equilibria I	1, 2,		PP
		- Shifting of chemical equilibria	4		
		(precipitation reaction, oxidation-			
		reduction reaction)			
4	30/08/2022	Chemical equilibria II	1-5	-	PP
		- Shifting of chemical equilibria			
		(acid-base reaction (neutralization),			
		gas-producing reaction)			
5	6/09/2022	Chemical kinetic	1-5		PP
		- Zero, first, second-order reactions			
		- Gas solubility			
		Basic water chen	nistry		
6	13/09/2022	Alkalinity	1-5	Lecture with learning	PP
		Buffering Carbonate system		materials	
7	20/09/2022	Carbonate system	1-5	 In class assignment 	PP
		• Acidity		• Out of class	
				assignment	
				 Asking and 	
				answering questions	
	Meas	sure of water quality/ assessing water of	quality/	water quality standards	
8	27/09/2022	• pH, ORP, Conductivity	1-5	Lecture with learning	PP
		Hardness		materials	
				 In class assignment 	
				• Out of class	
				assignment	
				Asking and	
				answering questions	
9		4/10/2022 Midterr	n Examin	ation	
10	11/10/2022	Dissolved oxygen	1-5	Lecture with learning	PP
		Oxygen Demand (BOD)		materials	
				 In class assignment 	

Week	Date	Contents	CLOs	Teaching & Learning method	Instructor's Names
11	18/10/2022	• Oxygen Demand (NBOD, COD)	1-5	• Out of class	PP
		Oxygen Profile in Stream		assignment	
				Asking and	
12	25/10/2022	Color, Turbidity, Solids	1-5	answering questions	PP
13	1/11/2022	Nitrogen, Phosphorus	1-5		PP
		• Iron, Manganese			
		• TOC			
14	8/11/2022	• Oil and grease	1-5	-	PP
		• Bacteria			
		Assessing water quality			
		• water quality standards			
		Introduction to basic chemical	treatme	nt processes	
15	15/11/2022	Coagulation/Flocculation/Jar test	1-5	• Lecture with learning	PP
		Neutralization		materials	
		Chemical Precipitation/ Water		 In class assignment 	
		softening		• Out of class	
16	22/11/2022	Disinfection	1-5	assignment	PP
		Chlorination and Chlorine		Asking and	
		Demand		answering questions	
17		Final ex	kam		

10. Course Assessment

					Weight
No.	Assessment Methods	Regulations	CLOs	Week	Distribution
					(%)
		The midterm examinations will	1-5	9	30
11.1	Mid-term exam	each cover approximately 1/2 of			
		the course material.			
		- The final exam will review the	1-5	17	30
11.2	Final exam	entire course as well as more			
11.2		intensively cover the last 1/2 of			
		the course material.			

					Weight
No.	Assessment Methods	Regulations	CLOs	Week	Distribution
					(%)
		-Quizzes will be given in class	1-5	3 7,12,15	15
11.3	Quizzes	and cover the content from the			
		previous weeks.			
11.4	Individual or group	Class assignment rubric	1-5	1-7, 16	15
11.4	Assignment				
11 F	Active Participation,	Class participation rubric	1-5	1-16	10
11.5	Class Attendance				
				Total	100

- Quizzes, midterm, and final exams

Students should understand the following examination rules. The exam will be mixtures short answer questions and short essay questions. Very few multiple choice and true/ false questions will be used.

- Make-up exams

Make-up examinations will be given only if the student has an excused or authorized absence. Students must contact the instructor no later than one week after the missed exam, or after return to campus, to indicate why they were absent and to request to take a make-up. It is the responsibility of the student to inquire as to the procedure for making up an exam. There are no make-ups, other class assignments.

- Requirements:

Bring to every class scientific or engineering calculator; phones must be turned off or switched to vibration mode; if you receive an urgent call, step out of the classroom while using the phone.

11. Grading System

 \blacksquare Criterion-referenced evaluation

Grade	Score	Grade	Score	Grade	Score	Grade	Score
А	≥ 80 %	В	70 – 74.99%	С	60 - 64.99%	D	50 – 54.99%
B+	75 – 79.99%	C+	65 – 69.99%	D+	55 - 59.99%	F	< 50 %

12. References

- 12.1 Susan M. Morgan, Lauren G. Heine, P. Aarne Vesilind, Introduction to Environmental Engineering, SI Version, 3rd edition, CL-Engineering, 2010.
- 12.2 Mackenzie L. Davis, David A. Cornwell, Introduction to Environmental Engineering, 5th Edition, McGraw-Hill Education, 2013.

- 12.3 Clair N. Sawyer, Perry L. McCarty, Gene F. Parkin, Chemistry for Environmental Engineering,
 4th edition, McGraw-Hill, Inc, 1994.
- 12.4 Stanley E. Manahan, Fundamentals of Environmental Chemistry, 1st edition, Lewis publishers, 1993.

Note:

PLO	
PLO 1 (Introduced)	Apply environmental engineering principles and knowledge to systematic solutions
	according to professional standards.
PLO 2 (Introduced)	Apply practical skills in environmental engineering and disaster management to real
	situations based on academic principles and professional ethics
Specific Skill (SS)	
SS1	Apply the knowledge of mathematics, science, engineering fundamentals
SS2	Assess quantity and quality of wastewater
SS3	Predict chemical reactions that occur in contaminated and natural environments
SS4	Analyze complex problems in the field of environmental engineering
SS5	Apply knowledge and theory to analyze and solve problems
Generic Skill (GS)	
GS1	Perform the systematic thinking, problem solving, and analytical skills
GS2	Demonstrates awareness of environmental issues
GS3	Demonstrate a sense of responsibility and a concern for ethical practice in
	environmental engineering
Knowledge (K)	
К1	Chemical principles of water and wastewater
К2	Water and wastewater chemistry
К3	Physical, chemical, and biological water and wastewater characteristics
К4	Physical-chemical water and wastewater treatment processes
К5	In-depth knowledge of theory and chemical principles used for evaluation of water
	quality in water and wastewater treatment
К6	Water quality parameters and measurements