

Course Syllabus (Academic Year 2022)

Kanchanaburi Campus, Mahidol University

1. Course No. and Title : KAED 322 Environmental Unit Operations

Credit (study hours) : 3 (3-0-6)

2. Program Name : Bachelor of Engineering in

Environmental Engineering and Disaster Management

3. Course Module : Required course (Environmental Engineering)

Pre/co-requisite : KAED 229 Hydraulic

4. Class Semester : \square 1st Semester \square 2nd Semester Academic Year 2022

5. Class Schedule & Venue : Mondays 13:00 – 16:00

6. Class Coordinator : Dr. Pensiri Prachakittikul

Contact No.: 0860240919 Email: pensiri.prc@mahidol.edu

7. Course Description

Principles, calculation, designing and application of physical and chemical unit operations in water and wastewater treatment: screening, grit removal, equalization, mixing, coagulation and flocculation, sedimentation, floatation, filtration, chemical precipitation, ion-exchange, absorption and adsorption, and reverse osmosis

8. Course Learning Outcomes (CLOs)

No.	CLOs	Expec	ted Skills / Knowl	edge	PLOs	
110.	CLOS	Specific	Generic	Knowledge	1 203	
1	Describe the role of various	- Systematic	GS1, GS3, GS4	-Sciences and	1	
	physico-chemical unit processes	thinking		Mathematics	(Reinforced)	
	within water and wastewater	- Problem		-Water and		
	treatment process, and the	identification		wastewater		
		SS1, SS2, SS7		-Fluid mechanics,		
	context of when they are			hydraulics, and		
	applied.			hydrology		
				K1-K12		
2	Apply the fundamental concepts,	- Problem solving	GS1-GS4	-Sciences and	1, 2	
	and applications for the design of	- Ability to analyze		Mathematics	(Reinforced)	
	main unit operations in the field	- Practical design		-Water and		
		SS1-SS8		wastewater		

of environmental engineering		Fluid mechanics,	
such as coagulation-		hydraulics, and	
flocculation, sedimentation,		hydrology	
thickening, flotation, aeration,		K1-K12	
adsorption, and filtration			
processes.			

9. Class Instructor List

9.1 Asst. Prof. Dr. Weerawut Chaiwat (WC) Mobile: 0845223098, Email: weerawut.cha@mahidol.edu

9.2 Dr. Pensiri Prachakittikul (PP) Molbile: 0860240919, Email: pensiri.prc@mahidol.edu

10. Course Outline

Week	Date	Contents	CLOs	Teaching & Learning Method	Instructor
1	8/08/2022	 Introduction to physical and chemical unit operations Mass balance/ Flow models/ Reactors 	1, 2	Lecture/ problem-based learning/ Asking and	WC
2	15/08/2022	Screening / Grit removal I	1, 2	answering questions	WC
3	22/08/2022	Grit removal II / EQ tank	1, 2		WC
4	29/08/2022	Agitation and mixing I	1, 2	OUIZ I / Lecture / problem-based learning	WC
5	5/09/2022	Agitation and mixing II	1, 2	Lecture/ problem-based learning/ Asking and answering questions	WC
6	12/09/2022	Sedimentation I – Free settling (Coagulation and flocculation)	1, 2	OUIZ II / Lecture/ problem-based learning	WC
7	19/09/2022	Sedimentation II – Hindered and compression settling	1, 2	Lecture/ problem-based learning/ Asking and answering questions	WC
8	26/09/2022	Sedimentation III – Floatation	1,2	QUIZ III / Lecture/ problem-based learning	WC
9		3/10/2022 Mid-term E	xamination		
10	10/10/2022	Basic principle of mass transfer	1, 2	Lecture/ problem-based	WC

Week	Date	Contents	CLOs	Teaching & Learning Method	Instructor	
		- Gas-liquid mass transfer (Oxygen		learning/ Asking and answering questions		
		transfer)		answering questions		
		- The two-film theory/ Mass transfer				
		coefficient				
		Basic principle of mass transfer	1, 2	<u>QUIZ IV/</u> Lecture /		
11	17/10/2022	- Liquid-solid mass transfer		problem-based learning	WC	
		- Filtration I – Depth filtration				
			1, 2	Lecture/		
12	31/10/2022	Filtration II – Surface filtration		problem-based	WC	
				learning/ Asking and		
				answering questions		
13	7/11/2022	Adsorption I	1,2	QUIZ V/ Lecture /	WC	
	4.4.4.4.0000		4.0	problem-based learning),,(G	
14	14/11/2022	Adsorption II	1,2	Lecture/ problem-based	WC	
1.5	01 /11 /0000	lan ayahanga	1, 2	learning/ Asking and	\A/C	
15	21/11/2022	lon exchange		answering questions	WC	
		Poster and Excel calculation	1, 2	Oral presentation /		
16	28/11/2022	presentation of designed unit	,	project-based leaning	PP	
	_5, _1, _0_2	operations		discussion		
17	Final Examination					

11. Course Assessment

No.	Methods / Activities	Regulations	CLOs	Week	Weight Distribution (%)
11.1	Mid-term exam	☑ Content (Week 1-8) ☑ Open book & calculator	1,2	9	30
11.2	Final exam	☑ Content (Week 10-16) ☑ Open book & calculator	1,2	17-18	30
11.3	Quiz (3% x 5 times)	☑ Open book & calculator ☑ Google form with limited time	1, 2	4, 6, 8, 11, 13	15

		- A3 poster and calculation files of			
	Group project - Fact sheet (10%)	designed environmental unit			15
11.4		operation must be submitted on	1.0	16	
11.4		google classroom	1,2	10	
	- Presentation (5%)	by the deadline.			
		- Scoring rubrics			
11.5	Homework	Student must submit homework on	1, 2	to be	5
11.5	Homework	Moodle platform by the deadline	1, 2	announced	5
11.6	Active Participation,	- Scoring rubric	1, 2	All	5
11.0	Class Attendance	- Scoring rubric	1, 2	All	J
				Total	100

12. Grading System

☑ Criterion-referenced evaluation

Grade	Score	Grade	Score	Grade	Score	Grade	Score
А	≥ 80 %	В	70 – 74.99%	С	60 – 64.99%	D	50 – 54.99%
B+	75 – 79.99%	C+	65 – 69.99%	D+	55 – 59.99%	F	< 50 %

13. References

- 13.1 McCabe WL, Smith JC, and Harriott P, Unit Operation for Chemical Engineering. New York: McGraw-Hill; 1993.
- 13.2 Reynolds and Richards, Unit Operations and Processes in Environmental Engineering. 2nd ed. PWS Publishing Company; 2002.
- 13.3 Metcalf & Eddy / Aecom, Wastewater Engineering Treatment and Resource Recovery, Fifth edition (Volume 1 and 2), McGraw-Hill Education, International Edition; 2014.
- 13.4 Theodore L, Dupont RR, and Ganeson K, Unit Operations in Environmental Engineering. John Wiley & Sons, Inc.; 2017.

Note:

	Program Learning Outcomes (PLOs)				
PLO1	Apply environmental engineering principles and knowledge to systematic solutions according to Professional Standards				
PLO2	Apply practical skills in environmental engineering and disaster management to real situations based on academic				
	principles and professional ethics				
	Specific Skill (SS)				

SS1	Assess quantity & quality of water resource demand and supply				
SS2	Assess quantity & quality of wastewater				
SS3	Understand concepts of unit conversion and can change units from ones to others				
SS4	Calculate mass and energy balances in basic environmental unit operations				
SS5	Understand rate of reaction and calculate rate constants and other related kinetic parameters				
SS6	Understand type of reactors and basically calculate volume of designed reactors				
SS7	Understand parameters, equations and operational principles of various physico-chemical treatment units				
SS8	Design physico-chemical treatment units and apply in water and wastewater treatment system				
	Generic Skill (GS)				
GS1	Systematic thinking, problem solving and analytical skills				
GS2	Basic computer skills				
GS3	Disaster risk awareness				
GS4	Professional ethics and responsibilities				
	Knowledge (K)				
K1	Water and analytical chemistry				
K2	Water and wastewater quality and characteristics				
K3	Chemical kinetics and basic reactor design				
K4	Material and energy balances				
K5	Flow measurement and hydraulics				
K6	Mass transfer				
K7	Screening and equalization tank				
K8	Mixing, coagulation and flocculation				
K9	Sedimentation and floatation				
K10	Adsorption				
K11	Ion exchange and membrane process				
1/11	ion exercises and memorate process				
K12	Filtration				