

Course Syllabus (Academic Year 2022)

School of Interdisciplinary Studies, Kanchanaburi Campus, Mahidol University

 Course No. and Title: KAED 445 Mathematical modelling for disaster and environmental management

Credit (study hours): 3(3-0-6)

- Program Name: Bachelor of Engineering in Environmental Engineering and Disaster
 Management
- 3. Course Module: Major Required Course (Environmental Engineering).

Pre/co-requisite: KAED224 Computer Programming and KAED 228 Survey for

environmental engineering and disaster management

- 4. Class Semester: /1st Semester 2nd Semester Academic Year 2022
- 5. Class Schedule & Venue: Monday 13.00 16.00 น. Computer Room 3rd Floor, Lecture Building, MUKA
- 6. Class Coordinator: Asst. Prof. Dr. Arika Bridhikitti Contact No.: 084-660-2919... Email: arika.bri@mahidol.ac.th

7. Course Description

Simulation; modelling; type of modelling; mathematical modelling for disaster forecasting and warning; hydrological modelling for surface water and ground water; fate and transport modellings for pollutants in air, water, and soil; water quality modelling; and land use change modelling

8. Course Objectives / Course Learning Outcomes (CLOs)

No	Objectives / CLOs	Ex			
INO.		Specific	Generic	Knowledge	F LUS
8.1	Be able to explain the principle of the mathematical models for environmental simulation and forecast	-Model tool usage -Spatial analysis -Applying modern IT	-Basic Computer skills - Planning and Organizing	-GIS -Mapping -Computer simulation	3 (Practical)

8.2	Be able to apply		-Ability to	
	mathematical models	-Innovation -Attention to Detail	motivate others	
	for simulating or		-Independent	6
	forecasting disaster or		Thinking	(Reinforced)
	environmental		-Adaptability	
	problems		-Creative thinking	

Program learning outcomes

Program learning outcomes

.PLO3 Apply geo-informatics system and information technologies in planning to handle environmental and disaster problems in accordance with academic principles

PLO6 Develop a creative technology in environmental engineering and disaster management

9. Class Instructor List

- 9.1 Name: Asst. Prof. Dr..Arika Brihdhikitti (AB), Environmental Engineering and Disaster Management Program, Mahidol University Kanchanaburi Campus, Contact No.:084-6602919 Email: arika.bri@mahidol.ac.th
- 9.2 Name: Asst. Prof. Dr. Yuttana Punkamonslip (YP), Environmental Engineering and Disaster Management Program, Mahidol University Kanchanaburi Campus, E-mail: yutthana.pun@mahidol.ac.th
- 9.3 Name: Dr. Pensiri Prachakittikul (PP), Environmental Engineering and Disaster Management Program, Mahidol University Kanchanaburi Campus, E-mail: pensiri.pra@mahidol.ac.th
- 9.4 Name: Mr. Narongsak Kaewdum (NR), Geoscience program, Mahidol University Kanchanaburi Campus, Email: narongsak.kae@mahidol.ac.th
- 9.5 Name: Dr. Maneerat Rumsamrong (MR), Business Administration Program, Mahidol University Kanchanaburi Campus, Email: maneerat.rum@mahidol.ac.th
- 9.6 Name: Asst. Prof. Dr. Thongchai Kanabkaew (TK), Faculty of Public Health, Thammasat University

10. Course Outline

Week	Date	Contents	CLOs	Teaching & Learning	Instructor's Names		
1	8 Aug 2022	 Course structure, grading system, class requirement and goal Intro to mathematical modeling 	8.1	Lecture	AB		
2	15 Aug 2022	Hydrological modeling: Introduction and concept	8.1	Lecture-based Demonstrating	YP		
3	22 Aug 2022	Hydrological modeling: WEAP	8.2	Learning by Doing Mini-project-based	ΥP		
4	29 Aug 2022	Hydrological modeling: HEC- RAS	8.2	Learning by Doing Mini-project-based	YP		
5	5 Sep 2022	Hydrological modeling: EPANET	8.2	Learning by Doing Mini-project-based	YP		
6	12 Sep 2022	Water quality modeling: Introduction and Concept	8.1	Lecture-based Demonstrating	PP		
7	19 Sep 2022	Water quality modeling: Streeter-Phelps, Nitrogen Model	8.2	Learning by Doing Mini-project-based	РР		
8	26 Sep 2022	Soil loss modeling: Concept and Practice	8.1, 8.2	Lecture-based Demonstrating Learning by Doing Mini-project-based	AB		
	3-7 October 2022 Midterm exam						
9	Sat 8 th - Sun			Lecture-based	ТК		
10	9 th October 2022 9.00 AM- 4.00 PM (6 hr/day)	Air Dispersion Modeling: AERMOD	8.1, 8.2	Demonstrating Learning by Doing	ТК		
11	31 Oct 2022	Ground water modeling: Introduction and Concept	8.1	Lecture-based Demonstrating	NK		
12	7 Nov 2022	Ground water modeling: Practice	8.2	Learning by Doing Mini-project-based	NK		
13	14 Nov 2022	Land use modeling: Introduction and Concept	8.1	Lecture-based Demonstrating	AB		

Week	Date	Contents	CLOs	Teaching & Learning	Instructor's Names	
14	21 Nov 2022	Land use modeling: CLUE	8.2	Learning by Doing	AB	
14				Mini-project-based		
		Artificial neural networks		Lecture-based	MR	
15	28 Nov 2022	model with rainfall data in	8.1, 8.2	Case study-based		
		crisis situations				
16	6 th to 16 th December 2022 Final Examination					

11. Course Assessment

No.	Methods /	Populations	CLOs	Week	Weight Distribution
	Activities	Regulations		Week	(%)
11.1	Mid-term exam		8.1	8	20
11.2	Final exam		8.1	16	20
11.3	Mini Projects	Activities: problem-solving or environmental simulation using math modeling Assessment: Grading assignment report by class lecturers	8.2	3,4,5,7,8, 12, 14	40
11.4	Class participation	Activities: Collaborate in class activities, Active participation Assessment: Observed by class coordinators		1-15	10
11.5	Group Discussion: Mini Project showcase	Activities: Exchange knowledge and ideas for solving the problems Assessment: Observed by class coordinators	8.2	15	10
				Total	100

12. Grading System

/Criterion-referenced evaluation

Grade	Score	Grade	Score	Grade	Score	Grade	Score
A	≥ 80 %	В	70 – 74.99%	С	60 - 64.99%	D	50 - 54.99%
B+	75 – 79.99%	C+	65 - 69.99%	D+	55 - 59.99%	F	< 50 %

 \Box Norm-referenced evaluation

*If use both criterion and norm-referenced evaluation, please tick two boxes.

13. References

- 13.1. Benavidez, R., Jackson, B., Maxwell, D., & Norton, K. (2018). A review of the (Revised) Universal Soil Loss Equation ((R) USLE): with a view to increasing its global applicability and improving soil loss estimates. *Hydrology and Earth System Sciences*, 22(11), 6059-6086.
- 13.2. Verburg, P. (2010). The CLUE model. Hands-on Exercises. Course Material. Institute for Environmental Studies, University of Amsterdam, 53.