

Course Syllabus (Academic Year 2021) Environmental Engineering and Disaster Management Program

1.	Course No. and Title	: KAED 326 Hydrology
	Credit (study hours)	: 3 (3-0-6)
2.	Program Name	: Bachelor of Engineering in
		Environmental Engineering and Disaster Management
3.	Course Module	: Required course (Basic Engineering)
	Pre/co-requisite	:-
4.	Class Semester	: \square 1 st Semester \square 2 nd Semester Academic Year 2021
5.	Class Schedule & Venu	e: Fridays 09:00 – 12:00
		Class Coordinator : Yutthana Phankamolsil
		Email: yutthana.pha@mahidol.edu

6. Course Description

An Introduction; hydrological cycle, precipitation; wind; evaporation; transpiration; infiltration/percolation; surface runoff; groundwater; sediment; reservoir; frequency analysis in hydrology.

$\frac{1}{2}$	uise Objectives / Course Learning Outcomes				
No	Objectives / CLOs	Expecte	PLO s		
		Specific	Generic	Knowledge	
1	Ability to define the hydrologic cycle, its	SS1	GS1	K1, K2	1/1.1
	components and the interaction between its				2/2.2
	components.				3/3.4
2	Ability to calculate precipitation/rainfall,	SS2			4/4.2
	evaporation, infiltration and surface				5/5.3
	flow/stream flow values for a basin.				6/6.4
3	Ability to calculate groundwater flow value				
	for a basin.				
4	Ability to calculate and plot fundamental		GS3		
	design graphics for streamflow such as key				
	curves, rating curve and hydrographs.				
5	Ability to use unit hydrograph theory for SS3				
	flood analysis.				

7. Course Objectives / Course Learning Outcomes (CLOs)

8. Class Instructor List

8.1 Yutthana Phankamolsil (YP), Email: yutthana.pha@mahidol.edu8.2 Luksanaree Maneechot (LM), Email: luksanaree.man@mahidol.ac.th

9. Course Outline

Week	Date	Contents	CLOs	Teaching & Learning Method	Instructor
1	11 Aug 21	Hydrological Processes	1		YP
2	18 Aug 21	Basic Weather	2		LM
3	25 Aug 21	Precipitation I - Formation of Precipitation	2	Online [Live	LM
4	1 Sep 21	Precipitation II - Estimating rainfall	2	meeting on WebEX]	YP
5	8 Sep 21	Evaporation and Evapotranspiration	2		YP
6	15 Sep 21	Infiltration	2		YP
7	22 Sep 21	Groundwater characteristics	3		KK
8	29 Sep 21	Groundwater flow calculation	3		
9		Mid-term e	xaminatio	on	
10	makeup	Stream instrument	4		YP
11	20 Oct 21	Hydrograph	4		YP
12	27 Oct 21	Unit Hydrograph I	4	Online	YP
13	3 Nov 21	Unit Hydrograph II	4	[Live meeting on	YP
14	10 Nov 21	Flood Routing	5	WebEX]	YP
15	17 Nov 21	Flood Routing	5		YP
16	24 Nov 21	Introducing the hydrological modeling	YP		
17		Final examination	n		

10. Course Assessment

No.	Methods / Activities	Regulations	CLOs	Week	Weight Distribution (%)
10.1	Mid-term exam	 ☑ Content (Week 1-8) ☑ Live examination ☑ Faculty-approved calculator 	1-3	9	20
10.2	Final exam	 ☑ Content (Week 9-15) ☑ Live examination ☑ Faculty-approved calculator 	4-5	17	20
10.3	Assignments (Homework, activities, or tests)Students must solve the problem in homework and complete the task in class activities		1-5	All	50
10.4	Class participation	Student must attend a class more than 80% of the whole course.	1-5	All	10
				Total	100

11. Grading System

Grad	Score	Grade	Score	Grade	Score	Grade	Score
e							
Α	≥ 80 %	В	70 –	С	60 - 64.99%	D	50 - 54.99%
			74.99%				
B+	75 –	C+	65 –	D+	55 - 59.99%	F	< 50 %
	79.99%		69.99%				

☑ Criterion-referenced evaluation

12. References

•) Chow, V. T., D.R. Maidment, and L.W. Mays. 1988. Applied Hydrology. New York: Mc-Graw-Hill.

b) Linsley, R.K., Jr., M.A. Kohler, and J.L.H. Paulhus. 1988. Hydrology for Engineers.

SI Metric Lon-don: Edition. McGraw-Hill.

Note:

Specific Skill (SS)						
SS1	Understand hydrological processes					
SS2	Estimate component of hydrological processes					
	Generic Skill (GS)					
GS1	GS1 Systematic thinking, problem solving and analytical skills					
GS2	Life-long learning and technology updating					
GS3	Disaster risk awareness					
GS4	Professional ethics and responsibilities					
	Knowledge (K)					
K1	Hydrological processes					
K2	Hydrological Modelling					
	ABET Criteria					
(a)	an ability to apply knowledge of mathematics, science, and engineering					
(b)	an ability to design and conduct experiments, as well as to analyze and interpret					
(c)	data					
	an ability to design a system, component, or process to meet desired needs within					
(d)	realistic constraints such as economic, environmental, social, political, ethical,					
(e)	health and safety, manufacturability, and sustainability					
(f)	an ability to function on multidisciplinary teams					
(g)	an ability to identify, formulate, and solve engineering problems					
(h)	an understanding of professional and ethical responsibility					
	an ability to communicate effectively					
(i)	the broad education necessary to understand the impact of engineering solutions in					
(j)	a global, economic, environmental, and societal context					
(k)	a recognition of the need for, and an ability to engage in life-long learning					
	a knowledge of contemporary issues					
	an ability to use the techniques, skills, and modern engineering tools necessary for					
	engineering practice					