

Course Syllabus (Academic Year 2023)

School of Interdisciplinary Studies, Kanchanaburi Campus, Mahidol University

1.	Course No. and Title	: KAED 222 Engineering Mechanics			
	Credit (study hours)	: 3 (3-0-6)			
2.	Program Name	: Bachelor of Engineering in Environmental Engineering and Disaster Management			
3.	Course Module	: Major Required Course			
	Pre/co-requisite	: SCPY 151 (General Physics I)			
4.	Class Semester	: \Box 1 st Semester \blacksquare 2 nd Semester Academic Year 2023			
5.	Class Schedule & Venue	: Monday 13:00-16:00, Onsite course (MUKA e-learning)			
6.	Class Coordinator	: Dr. Watcharapol Wonglertarak			
		watcharapol.won@mahidol.ac.th, Tel 085 849 3199			

7. Course description

Force system; resultant; equilibrium; kinematics and kinetics of particles and rigid Bodies; Newton's second law of motion.

8. Course Objectives / Course Learning Outcomes (CLOs)

No.	Objectives/CLOs	Expected Skills/ Knowledge			
NO.	Objectives/CLOs	Specific (S)	Generic (G)	Knowledge (K)	PLOs
8.1	To understand force system and identify type of	S1	G1	К1	1
	force				
8.2	To calculate resultant force, equilibrium force,	S1	G1	K1, K2	1
	friction force, and distributed forces				
8.3	To identify type of motion and force	S1	G1	K1, K2	1
8.4	To calculate forces related to velocity and	S1	G1	K1, K2, K3	1
	acceleration				

Specific Competences

S1 Ability to apply knowledge of mathematics, physics, and engineering

Generic Competence

G1 Systematic thinking, problem solving, and analytical skills

Knowledge Competence

- K1 Calculus and vector mechanics
- K2 Force systems, motions and equilibrium
- K3 Kinematics and kinetics of particles and rigid bodies

9. Class instructor list

Dr. Watcharapol Wonglertarak Contact No. 085 849 3199 Email: <u>watcharapol.won@mahidol.ac.th</u>

10. Course Outline

Week	Date	Contents	CLOs	Teaching & Learning	Instructor	
Week				method		
1	8/1/2024	Introduction: Conversion	8.1	Course Syllabus and	WW	
				Lecture		
2	15/1/2024	Force systems: Two Dimensions	8.1, 8.2	Presentation, Activity,	WW	
				and Assignment		
3	22/1/2024	Force systems: Three Dimensions	8.1, 8.2	Presentation, Activity,	WW	
				and Assignment		
4	29/1/2024	Forces and Moments	8.1,	Presentation, Activity,	WW	
5	5/2/2024		8.2, 8.3	and Assignment		
6	12/2/2024	Equilibrium of Rigid Bodies	8.1, 8.2	Presentation, Activity,	WW	
				and Assignment		
7	19/2/2024	Equilibrium in Three Dimensions	8.1, 8.2	Presentation, Activity,	WW	
				and Assignment		
8	26/2/2024	Day off				
9	4-8/3/2024	Mid-t	erm Examina	ation		
10	11/3/2024	Friction Force	8.1, 8.2	Presentation, Activity,	WW	
				and Assignment		
11	18/3/2024	Kinetics of Particles (Axes x-y)	8.1, 8.2	Presentation, Activity,	WW	
				and Assignment		
12	25/3/2024	Kinetics of Particles (Axes n-t)	8.1, 8.2	Presentation, Activity,	WW	
				and Assignment		
13	1/4/2024	Plane Motion of Rigid Bodies: Motion	8.1,	Presentation, Activity,	WW	
		Relative to Rotating Axes	8.2, 8.4	and Assignment		
		Plane Motion of Rigid Bodies: Relative				
		Velocity				
14	8/4/2024	Day off				
15	15/4/2024	Day off				
16	22/4/2024	Plane Motion of Rigid Bodies: Relative	8.1,	Presentation, Activity,	WW	
		Acceleration	8.2, 8.4	and Assignment		
17	29/4/2024-					
	10/5/2024	Fin	al Examinati			

11. Course Assessment

No.	Methods/Activities	Regulations	CLOs	Week	Weight Distribution (%)
1	Class participation and	Class participation and Learner must attend the class more and -		All	5
	Class attention	80% of course.			
2	Quiz	Learner must be testing the knowledge	8.1, 8.2,	All	10
		of previous week	8.3, 8.4		
3	Assignment	- Learner must practice the engineering	8.1, 8.2,	All	15
		skills via exercises and assignments form	8.3, 8.4		
		each topic.			
		- The score will be evaluated according			
		to the quality and details of work by			
		instructors of those topics.			
4	Midterm Examination	The scope of exam will be cover topics	8.1, 8.2,	9	35
		of the 1 st -8 th week in this course.	8.3		
5	Final Examination	The scope of exam will be cover topics	8.1, 8.2,	16	35
		of the 10 th -15 th week in this course.	8.4		
	•	Total	100		

12. Grading system

Grade	Score	Grade	Score
А	≥ 80%	B+	75-79.99 %
В	70-74.99%	C+	65-69.99%
С	60-64.99%	D+	55-59.99%
D	50-54.99%	F	<50

However, the rubric scoring scale will be applied for evaluation the student performance along their tasks, such as assignment responsibility, presentation skill, and use of language, and organization capability.

13. References

- 1. Beer, F.P., Johnston, E.R., Mazurek, D.F., (2019). Vector Mechanics for Engineers: Statics (12th ed.): McGraw-Hill.
- 2. Hibbeler, R.C., (2015). Mechanics for Engineers: Statics (14th ed.): Pearson Education South Asia Ple Ltd.
- 3. Hibbeler, R.C., (2015). Mechanics for Engineers: Dynamics (14th ed.): Pearson Education South Asia Ple Ltd.
- 4. สิริศักดิ์ ปโยธรสิริ (2547). กลศาสตร์วิศวกรรม ภาคสถิตยศาสตร์ (พิมพ์ครั้งที่ 2)