

Course Syllabus (Academic Year 2020) Environmental Engineering and Disaster Management Program

1. Course No. and Title : KAED 372 Hydrology

Credit (study hours) : 3 (3-0-6)

2. Program Name : Bachelor of Engineering in

Environmental Engineering and Disaster Management

3. Course Module : Required course (Basic Engineering)

Pre/co-requisite : -

4. Class Semester : \square 1st Semester \square 2nd Semester Academic Year 2020

5. Class Schedule & Venue: Fridays 09:00 – 12:00, Room 2218, Learning Building

Class Coordinator : Dr. Yutthana Phankamolsil

Contact No.: 0816954621 Email: yutthana.pha@mahidol.edu

6. Course Description

Introduction, hydrological cycle, climate variation, precipitation, wind, evaporation, transpiration, infiltration, runoff, rainfall-runoff, overland flow, sediment, reservoir, frequency analysis in hydrology.

7. Course Objectives / Course Learning Outcomes (CLOs)

N		Expecte	PLO		
0.	Objectives / CLOs	Specific	Generic	eric Knowledg e	
7.	Be able to explain the hydrological	SS1	GS1,	K1	1/1.1
1	components processes.		GS2		
7.	Be able to estimate the hydrological	SS2	GS1,	K1, K2	1/1.2
2	components processes.		GS2		
			GS3,		
			GS4		

8. Class Instructor List

8.1 Name: Dr. Yutthana Phankamolsil (YP)

Contact No.: 0816954621 Email: yutthana.pha@mahidol.edu

9. Course Outline

Week	Date	Contents	CLOs	Teaching & Learning Method	Instructor
1	12 Aug 20	Hydrological Processes	1	Offline	YP
2	13 Aug 20	Basic Weather	1	[Clips VDO,	YP
3	19 Aug 20	Evaporation and Evapotranspiration	1	assignment]	KK
4	20 Aug 20	Precipitation I - Formation of Precipitation	1	Online [Live	YP
5	26 Aug 20	Precipitation II - Estimating rainfall	1	meeting on WebEX,	YP
6	27 Aug 20	Infiltration	1	MS-team,	YP

7	2 Sep 20	Stream instrument	1	presentstion]	KK	
8	3 Sep 20	Mid-term Examination				
9	9 Sep 20	Hydrograph - Hydrograph Shape - Mass Curve	1	Offline	YP	
10	10 Sep 20	Hydrograph - Flow Duration Curve	1	[Clips VDO,	YP	
11	16 Sep 20	Hydrograph Analysis 1 - Unit Hydrograph I	1	assignment]	YP	
12	17 Sep 20	Hydrograph Analysis 2 - Unit Hydrograph II	1	Online [Live	YP	
13	23 Sep 20	Flood Routing	2	meeting on WebEX,	YP	
14	24 Sep 20	Ground Water I	2	MS-team, presentstion	YP	
15	30 Sep 20	Ground Water II	2]]	YP	
16	1 Oct 20	Hydrological Modelling Practice	1,2		YP	
17		Einal Evamination	on.			
18		Final Examination)II			

Note: YP (Yutthana Phankamolsil), KK (Kitiya Keatnarakorn)

10. Course Assessment

No.	Methods / Activities	Regulations	CLOs	Week	Weight Distribution (%)
10.1	Mid-term exam	☑ Content (Week 1-8) ☑ Live examination ☑ Faculty-approved calculator	1-2	8	20
10.2	Final exam	☑ Content (Week 10-16) ☑ Live examination ☑ Faculty-approved calculator	1-2	17,18	20
10.3	Assignments (Homework, activities, or tests)	Students must solve the problem in homework and complete the task in class activities	1-2	All	50
10.4	Class participation	Student must attend a class more than 80% of the whole course.	1-2	All	10
				Total	100

11. Grading System

☑ Criterion-referenced evaluation

Grad	Score	Grade	Score	Grade	Score	Grade	Score
e							
A	≥ 80 %	В	70 –	С	60 - 64.99%	D	50 - 54.99%
			74.99%				
B+	75 –	C+	65 –	D+	55 – 59.99%	F	< 50 %
	79.99%		69.99%				

12. References

- _o) Chow, V. T., D.R. Maidment, and L.W. Mays. 1988. Applied Hydrology. New York: Mc-Graw-Hill.
- ๒) Linsley, R.K., Jr., M.A. Kohler, and J.L.H. Paulhus. 1988. Hydrology for Engineers. SI Metric Lon-don: Edition. McGraw-Hill.

Note:

vote:					
	Specific Skill (SS)				
SS1	Understand hydrological processes				
SS2	Estimate component of hydrological processes				
	Generic Skill (GS)				
GS1	Systematic thinking, problem solving and analytical skills				
GS2	Life-long learning and technology updating				
GS3	Disaster risk awareness				
GS4	Professional ethics and responsibilities				
	Knowledge (K)				
K1	Hydrological processes				
K2	Hydrological Modelling				
	ABET Criteria				
(a)	an ability to apply knowledge of mathematics, science, and engineering				
(b)	an ability to design and conduct experiments, as well as to analyze and interpret				
(c)	data				
	an ability to design a system, component, or process to meet desired needs within				
(d)	realistic constraints such as economic, environmental, social, political, ethical,				
(e)	health and safety, manufacturability, and sustainability				
(f)	an ability to function on multidisciplinary teams				
(g)	an ability to identify, formulate, and solve engineering problems				
(h)	an understanding of professional and ethical responsibility				
	an ability to communicate effectively				
(i)	the broad education necessary to understand the impact of engineering solutions in				
(j)	a global, economic, environmental, and societal context				
(k)	a recognition of the need for, and an ability to engage in life-long learning				
	a knowledge of contemporary issues				
	an ability to use the techniques, skills, and modern engineering tools necessary for				
	engineering practice				