

#### Course Syllabus (Academic Year 2020)

#### School of Interdisciplinary Studies, Kanchanaburi Campus, Mahidol University

| 1. | Course No. and Title                                             | : KAED 340               | Design of Air Pollution Control System              |  |  |  |
|----|------------------------------------------------------------------|--------------------------|-----------------------------------------------------|--|--|--|
|    | Credit (study hours)                                             | : 3(3-0-6)               |                                                     |  |  |  |
| 2. | Program Name                                                     | : Bachelor of Er         | ngineering Program in Environmental Engineering and |  |  |  |
|    | Disaster Management                                              |                          |                                                     |  |  |  |
| 3. | <b>Course Module</b>                                             | : Major Required Courses |                                                     |  |  |  |
|    | Pre/co-requisite                                                 | : None                   |                                                     |  |  |  |
| 4. | Class Semester                                                   | : 2nd Semester           | Academic Year 2020                                  |  |  |  |
| 5. | <b>5.</b> Class Schedule & Venue: Tuesday 8:00 – 9:30, Room 2217 |                          |                                                     |  |  |  |
|    | Friday 1                                                         | 3:00 – 14:30, Ro         | om 2216                                             |  |  |  |
| 6. | <b>Class Coordinator</b>                                         |                          |                                                     |  |  |  |
|    | Monchai Pumka                                                    | ew Contact               | No. : 097 248 8554                                  |  |  |  |
|    | Email :                                                          | monchai.pum@m            | ahidol.ac.th                                        |  |  |  |
|    | Arika Bridhikitti                                                | , Ph.D. Contact          | No. : 084-660-2919                                  |  |  |  |
|    | Email: arika.bri@mahidol.edu                                     |                          |                                                     |  |  |  |
|    | Arnon Sitdhivej (Guest lecturer) Contact No. : 081 816 5594      |                          |                                                     |  |  |  |
|    | Email: S                                                         | Sitdhivej@gmail.c        | com                                                 |  |  |  |
|    |                                                                  |                          |                                                     |  |  |  |

## 7. Course Description

ชนิดและแหล่งกำเนิดของมลพิษทางอากาศ ผลกระทบต่อสุขภาพและสิ่งแวดล้อม การเคลื่อนย้ายและการ แพร่กระจายของมลพิษทางอากาศ หลักการควบคุมฝุ่นและก๊าซมลพิษ การชักตัวอย่างและวิธีการวิเคราะห์ กฎหมายและข้อกำหนด หลักการและการออกแบบหน่วยควบคุมฝุ่นละอองและก๊าซ การออกแบบระบบระบาย อากาศ การเดินระบบและการซ่อมบำรุง

Types of air pollutants and sources; effects on health and environment; meteorological transport; principles of particulate and gaseous pollutant control; sampling and analysis methods; laws and regulations. Principles and design of air pollution control units for particulate and gases; ventilation system design; operation and maintenance.

| N   |                                                  | Expected | Sub-    |           |          |
|-----|--------------------------------------------------|----------|---------|-----------|----------|
| No. | Objectives / CLOs                                | Specific | Generic | Knowledge | PLOs     |
| 8.1 | Be able to describe major air pollutants and its |          |         | /         | 1.1, 1.2 |
|     | impacts on human health and environment.         |          |         |           |          |

#### 8. Course Objectives / Course Learning Outcomes (CLOs)

| 8.2 | Be able to describe concepts on fate and transport of |   | / | 1.1, 1.2 |
|-----|-------------------------------------------------------|---|---|----------|
|     | air pollution                                         |   |   |          |
| 8.3 | Be able to demonstrate air pollution samplings        |   | / | 1.1      |
| 8.4 | Be able to deliver significant laws and regulations   |   | / | 5.1      |
|     | related with air pollution management and control in  |   |   |          |
|     | Thailand                                              |   |   |          |
| 8.5 | Be able to calculate and design the basic air         | / | / | 6.3      |
|     | treatment processes                                   |   |   |          |
| 8.6 | Be able to calculate and design ventilation system    | / | / | 6.3      |
| 8.7 | Be able to exemplify applications of air pollution    | / |   | 5.5      |
|     | control systems in real working environment           |   |   |          |

### Program learning outcomes

- 1.1. Accurately explain basic concept, theories and principles of environmental engineering
- 1.2. Systematically summarize important issues from collected data
- 5.1 Integrate economics, social and environmental issues to environmental engineering and disaster management works
- 6.3 Develop a conceptual model or prototype from fundamental engineering knowledge
- **5.5.** Learn and experience from real working environments and solve engineering problems occurred in organizations or industries

## 9. Course Outline

| Week | Date            | Contents                                | CLO<br>s | Learning method      | Instruc<br>tor |
|------|-----------------|-----------------------------------------|----------|----------------------|----------------|
| 1    | 19, 22 Jan 2021 | -Introduction to course outline,        | 8.6      | Lecture              | AB             |
|      |                 | objectives, and assessment              |          | In-class calculation |                |
|      |                 | -Air Pressure, Air density, Air         |          |                      |                |
|      |                 | composition, Air                        |          |                      |                |
|      |                 | - Air Ventilation for Occupation health |          |                      |                |
|      |                 | and Heat mitigation                     |          |                      |                |
| 2    | 26 Jan 2021     | Fan                                     | 8.6      | Presentation         | AB             |
|      |                 | -Fan characteristic curve               |          | In-class calculation |                |
|      |                 | -System curve                           |          |                      |                |
|      | 29 Jan 2021     | Criteria Air Pollutants                 | 8.1      | Presentation         | AB             |
|      |                 | - Effects                               | 8.4      |                      |                |
|      |                 | -National Ambient Air Quality Standards |          |                      |                |

| Week | Date        | Contents                                 | CLO | Learning method      | Instruc |
|------|-------------|------------------------------------------|-----|----------------------|---------|
|      |             |                                          | S   |                      | tor     |
| 3    | 2 Feb 2021  | Criteria Air Pollutants (cont)           | 8.1 | Presentation         | AB      |
|      |             |                                          | 8.4 | Submit Homework 1    |         |
|      | 5 Feb 2021  | Group Discussion                         | 8.3 | Presentation         | AB      |
| 4    | 9 Feb 2021  | Measurement and monitoring of air        | 8.3 | Presentation         | AB      |
|      |             | pollutants, Sampling                     | 8.4 |                      |         |
|      |             | methods and instruments (1)              |     |                      |         |
|      |             | - Concentration unit                     |     |                      |         |
|      |             | - Sampling for ambient air pollution     |     |                      |         |
|      |             | - Sampling for occupation health         |     |                      |         |
|      |             | - Regulation/Standard                    |     |                      |         |
|      | 12 Feb 2021 | Measurement and monitoring of air        | 8.3 | Presentation         | AB      |
|      |             | pollutants, Sampling                     | 8.4 |                      |         |
|      |             | - Sampling for VOCs                      |     |                      |         |
|      |             | - Stack Air Sampling (US EPA method 5    |     |                      |         |
|      |             | and method 6)                            |     |                      |         |
|      |             | - Sampling for vehicle exhaust emissions |     |                      |         |
|      |             | - Regulation/Standard                    |     |                      |         |
| 5    | 16 Feb 2021 | Meteorology for air pollution control    | 8.2 | Presentation         | AB      |
|      | 19 Feb 2021 | Meteorology for air pollution control    |     |                      | AB      |
|      |             | (cont.)                                  | 8.2 | Presentation         |         |
| 6    | 23 Feb 2021 | Introduction to Air pollution control    |     |                      | AB      |
|      |             | technology                               | 8.5 | Presentation         |         |
|      |             | -Gravity Settling Chamber                |     | In-class calculation |         |
|      | 26 Feb 2021 | Cyclone                                  | 0.5 | Presentation         | AB      |
|      |             |                                          | 8.5 | In-class calculation |         |
| 7    | 2 Mar 2021  | Wet scrubber                             |     | Presentation         | AB      |
|      |             |                                          | 8.5 | In-class calculation |         |
|      | 5 Mar 2021  | Bag house, Bag Filter                    | _   | Presentation         | AB      |
|      |             |                                          | 8.5 | In-class calculation |         |
| 8    | 9 Mar 2021  | Group project                            |     | Presentation         | AB      |
| -    |             |                                          | 8.5 | In-class calculation |         |
|      | Midterm Exa | <br>mination                             |     |                      | 1       |
|      |             |                                          |     |                      |         |

| Week | Date                       | Contents                                                  | CLO<br>s    | Learning method                                           | Instruc<br>tor |  |  |
|------|----------------------------|-----------------------------------------------------------|-------------|-----------------------------------------------------------|----------------|--|--|
| 9    | 23 Mar 2021                | Electronic Precipitator                                   | 8.5         | Presentation<br>In-class calculation                      | AB             |  |  |
|      | 26 Mar 2021                | Adsorption<br>Biofiltration                               | 8.5         | Presentation<br>In-class calculation                      | AB             |  |  |
| 10   | 27 Mar 2021 (3<br>hr, Sat) | Demonstrate Air sampling                                  | 8.7         | Presentation &<br>workshop                                | AB,<br>Needis  |  |  |
| 11   | 30 Mar 2021                | Absorption                                                | 8.5         | Presentation<br>In-class calculation                      | AB             |  |  |
|      | 2 Apr 2021                 | Condensation<br>Thermal Oxidation                         | 8.5         | Presentation<br>In-class calculation                      | AB             |  |  |
| 12   | 9 Apr 2021                 | Group project                                             | 8.5         | Presentation<br>In-class calculation                      | AB             |  |  |
| 13   | 24 Apr 2021 (6<br>hr, Sat) | VOCs inventory in petroleum industry:<br>field experience | 8.7         | Presentation &<br>workshop                                | MP, AS         |  |  |
| 14   |                            | Air pollution model: field experience                     | 8.7         | Presentation &<br>workshop                                | MP, AS         |  |  |
| 15   | 27, 30 Apr 2021            | Group Project Presentation                                | 8.5,<br>8.7 | Presentation<br>In-class calculation<br>Submit Homework 4 | AB             |  |  |
|      | Final Examination          |                                                           |             |                                                           |                |  |  |

## **10.** Course Assessment

| No. | Methods/Activities | Regulations                                | CLOs | Week | Weight      |
|-----|--------------------|--------------------------------------------|------|------|-------------|
|     |                    |                                            |      |      | Distributio |
|     |                    |                                            |      |      | n           |
| 1   | Class              | • Student must submit the assignments      |      | All  | 5           |
|     | participation      | in time                                    |      |      |             |
|     | and Class          | • Student must attend classes on time      |      |      |             |
|     | attention          | > 80% of the course, by CC                 |      |      |             |
|     |                    | Student must participate in class activity |      | All  | 5           |
|     |                    |                                            |      |      |             |

| No. | Methods/Activities | Regulations                                                 | CLOs     | Week   | Weight           |
|-----|--------------------|-------------------------------------------------------------|----------|--------|------------------|
|     |                    |                                                             |          |        | Distributio<br>n |
| 2   | Assignment         | I. Learner must practice the                                | All      | Weekly | 25               |
|     |                    | engineering skills from exercises                           |          |        |                  |
|     |                    | and assignments                                             |          |        |                  |
|     |                    | II. The score will be evaluated                             |          |        |                  |
|     |                    | according to the quality and details                        |          |        |                  |
|     |                    | of work by instructors. (Correctness,                       |          |        |                  |
|     |                    | Determination)                                              |          |        |                  |
| 3   | Group Project*     | I. 2 people per group                                       | 8.5, 8.4 | 15     | 25               |
|     |                    | II. Topic assigned by lecturer                              |          |        |                  |
|     |                    | III. Exhibit in ED Innovation Day 29-                       |          |        |                  |
|     |                    | 30 May 2021                                                 |          |        |                  |
|     |                    | IV. Grade evaluated by Rubric                               |          |        |                  |
|     |                    | criteria <sup>*</sup>                                       |          |        |                  |
| 3   | Midterm            | III. The exam will be held on                               | All      | 9      | 20               |
|     | Examination        | schedule.                                                   |          |        |                  |
|     |                    | IV. It is close-book exam which                             |          |        |                  |
|     |                    | student can use personal calculator.                        |          |        |                  |
|     |                    | V. The scope of exam will be cover                          |          |        |                  |
|     |                    | topics of the 1 <sup>st</sup> -8 <sup>th</sup> week in this |          |        |                  |
|     |                    | course.                                                     |          |        |                  |
| 6   | Final Examination  | VI. The exam will be held on schedule.                      | All      | 16     | 20               |
|     |                    | VII.It is close-book exam which                             |          |        |                  |
|     |                    | student can use personal calculator.                        |          |        |                  |
|     |                    | VIII. III. The scope of exam will                           |          |        |                  |
|     |                    | cover all topics of this course.                            |          |        |                  |
|     |                    |                                                             |          | Total  | 100              |

## <sup>\*</sup>Group Project topic

- I. Design odor control system for a Chicken farm in Tha Sung, Kanchanaburi
- II. Morphology (size and shape) of aerosol in MUKA and potential sources
- III. Evaluate efficiency of 10 facial masks in the market for PM2.5 reduction
- IV. Estimate changes in efficiency of a standard facial mask with time How it fit with fabric filter calculation?
- V. Estimate efficiency of water springer for ambient PM2.5 removal How it fit with wet scrubber calculation?
- VI. Estimate efficiency of settling chamber for fly ash removal (sugarcane industry)
- VII. Design air ventilation system for heat mitigation in a U-dorm, MUKA
- VIII. Design the best cyclone separator for cane fly ash removal

### **Rubric for Group project**

| Accurately explain basic | Integrate economics,     | Solve engineering    | Express ideas and use |
|--------------------------|--------------------------|----------------------|-----------------------|
| concept, theories and    | social and environmental | problems occurred in | appropriate media for |
| principles of            | issues to environmental  | organizations or     | communication         |
| environmental            | engineering and disaster | industries           |                       |
| engineering              | management works         |                      |                       |
| 10                       | 5                        | 10                   | 5                     |

#### 11. Grading System

Criterion-referenced evaluation

The student performance in overall course will be measured by Criterion-referenced assessment as

following table.

| Grade | Score       | Grade | Score       | Grade | Score       | Grade | Score       |
|-------|-------------|-------|-------------|-------|-------------|-------|-------------|
| А     | 80%         | В     | 70 - 74.99% | С     | 60 - 64.99% | D     | 50 - 54.99% |
| B+    | 75 - 79.99% | C+    | 65 - 69.99% | D+    | 55 - 59.99% | F     | < 50 %      |

## 12. References

- กรมโรงงานอุตสาหกรรม. ตำราระบบบำบัดมลพิษทางอากาศ. สูนย์บริการวิชาการแห่ง จุฬาลงกรณ์มหาวิทยาลัย. พิมพ์ครั้งที่ 1. กรุงเทพมหานคร. 2547.
- 2. ศิวพันธุ์ ชูอินทร์. การเก็บตัวอย่างและตรวจวัดสารมลพิษทางอากาศ.สำนักพิมพ์แห่งจุฬาลงกรณ์

มหาวิทยาลัย.พิมพ์ครั้งที่ 1. กรุงเทพมหานคร. 2560

- รศ.ดร.วันทนี พันธุ์ประสิทธิ์. การระบายอากาศในโรงงานอุตสาหกรรม สำหรับนักสุขศาสตร์ อุตสาหกรรมและนักอาชีวอนามัย. พิมพ์ครั้งที่ 2.
- สภาวิศวกร. ระบบควบคุมมลพิษทางอากาศ. โดยคณะอนุกรรมการมาตรฐานการประกอบวิชาชีพ.
  Download <u>http://www.coe.or.th/coe-2/Download/Articles/ENV/CH6.pdf</u> (06/02/2560)
- 5. Thedore, L. (2008). Air Pollution Control Equipment Calculations. Wiley.
- 6. Myer, K. editor (2018). Handbook of environmental engineering. First Edition, Wiley: USA

# **13.** PLOs (update 26/10/2018)

| Progra | m Learning Outcomes                                                                                  |
|--------|------------------------------------------------------------------------------------------------------|
| 1      | Apply environmental engineering principles and knowledge to systematic solutions according to        |
|        | Professional Standards                                                                               |
| 2      | Apply practical skills in environmental engineering and disaster management to real situations based |
|        | on academic principles and professional ethics                                                       |
| 3      | Apply geo-informatics system and information technologies in planning to handle environmental        |
|        | and disaster problems in accordance with academic principles                                         |
| 4      | Present, discuss, and transfer knowledge clearly to persons related to professional works according  |
|        | to communication objectives                                                                          |
| 5      | Work as an environmental engineer with other people to solve complicated problems according to       |
|        | economic, social, and environmental issues                                                           |
| 6      | Design and invent a creative innovation in environmental engineering and disaster management         |
|        |                                                                                                      |